An optimization approach for dynamical Tucker tensor approximation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical approximation of hierarchical Tucker and tensor-train tensors

We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...

متن کامل

Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors

We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...

متن کامل

Dynamical Tensor Approximation

For the approximation of time-dependent data tensors and of solutions to tensor differential equations by tensors of low Tucker rank, we study a computational approach that can be viewed as a continuous-time updating procedure. This approach works with the increments rather than the full tensor and avoids the computation of decompositions of large matrices. In this method, the derivative is pro...

متن کامل

Hierarchical Tucker Tensor Optimization - Applications to Tensor Completion

Abstract—In this work, we develop an optimization framework for problems whose solutions are well-approximated by Hierarchical Tucker (HT) tensors, an efficient structured tensor format based on recursive subspace factorizations. Using the differential geometric tools presented here, we construct standard optimization algorithms such as Steepest Descent and Conjugate Gradient for interpolating ...

متن کامل

Wedderburn rank reduction and Krylov subspace method for tensor approximation. Part 1: Tucker case

We propose algorithms for Tucker approximation of 3-tensor, that use it only through tensor-by-vector-by-vector multiplication subroutine. In matrix case, Krylov methods are methods of choice to approximate dominant column and row subspace of sparse or structured matrix given through matrix-by-vector subroutine. However, direct generalization to tensor case, proposed recently by Eldén and Savas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Applied Mathematics

سال: 2019

ISSN: 2590-0374

DOI: 10.1016/j.rinam.2019.100002